A case study on workstation-dependent acoustic characterization of open plan offices

Baltazar Briere De La Hosseraye ${ }^{1}$, Felix Simeon Egner ${ }^{2,3}$, Georgios Diapoulis ${ }^{4}$, Huiqing Wang ${ }^{1}$, Jacques Cuenca ${ }^{5}$
5

 e-Forum Acusticum 2020 Dec 7-11, 2020 Building Acoustics group, Eindhoven University of Technology, Eindhoven, The Nederlands
${ }^{2}$ Department of Mechanical Engineering, KU Leuven, Belgium, ${ }^{3}$ DMMS Core lab, Flanders Make, Belgium f Mechanical Engineering, KU Leuven, Belgium, ${ }^{3}$ DMMS Core lab, Flanders
${ }^{4}$ Division of Applied Acoustics, Chalmers University of Technology, Sweden
${ }^{5}$ Acoustics, Chalmers University of Te

1.a. Problem description

- Environment: Open plan office
- Typical noise sources: speech, walking sound, environmental noise, working sounds (keyboard, phone)
- Approaches for the design of acoustic treatment usually don't take subjective evaluations of employees perception in to account

1.b. Objectives

- Assessment of acoustic environment based on room acoustic measurements and listening tests
- Implementation and validation of numerically simulated acoustic treatment based on objective parameters and perceptual tests

1.c. Test case office

- $150 \mathrm{~m}^{2}$
- Limited acoustic treatment (panels, ceiling)

1.d. Approach

3. Listening test

Test layout
AB testing of acoustic annoyance (no reference)
72 stimuli (2 receiver positions, 6 sources, 4 screen scenarios)

- All unordered pairs without repetition
- Binaural auralization of Harvard speech corpus (single speaker, gender balanced)
Comparison between screen heights
- 6 pairs of screens (eg. $110-140 \mathrm{~cm}, 110-170 \mathrm{~cm}$)
- Participants and procedure

29 participants in the analysis (5 female, 24 male, age $=$ 4.6+/-9.5 years)

Web-based listening test (BeaqleJS, htiti/lab2 _ta chamers. se:0035) - Hypothesis
"The responses of the listening test will vary with respect
to stimuli based on different screen heights"

- Results

For receiver position R22 the participants were more undecidable in comparison to R09

- Particularly for screen heights $110-140 \mathrm{~cm}$

Specific source-receiver combinations show more annoyance is perceived for larger screens

- These are combinations that have diagonal angle of incidence (45 degrees) with the screens or reflections incidence (45 degrees) with the scree
for the wall (eg. R22-S06, R22-S02)

Figure 3.1: Master plan of workstations \& source-receiver positions

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 721536

